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Abstract. Basic theoretical issues relating to the response of confined relativistic particles are considered
including the scaling of the response in spacelike and timelike regions of momentum transfer and the role
of final-state interactions. A simple single-particle potential model incorporating relativity and linear con-
finement is solved exactly and its response is calculated. The response is studied in common approximation
schemes and it is found that final-state interactions effects persist in the limit that the three-momentum
transferred to the target is large. The fact that the particles are bound leads to a nonzero response in the
timelike region of four-momentum transfer equal to about 10% of the total strength. The strength in the
timelike region must be taken into account to fulfill the particle number sum rule.

PACS. 13.60.Hb Total and inclusive cross-sections (including deep-inelastic processes) – 12.39.Ki Rela-
tivistic quark model – 12.39.Pn Potential models

1 Introduction

Deep inelastic scattering (DIS) of leptons by hadrons is
generally discussed in the framework of the naive par-
ton model and the QCD-improved parton model using
the operator product expansion [1]. This approach has
been very successful in determining the evolution of the
structure functions as a function of the square of the four-
momentum transferred to the hadron [2]. In the leading
order of the model the hadron is approximated by a col-
lection of noninteracting quarks and gluons. The struck
quark is assumed to be on the mass-shell both before and
after its interaction with the electron. Basic theoretical
considerations bring the validity of these assumptions into
question [3].

Based on the assumption that the struck constituent
is on the mass-shell before and after interaction with the
probe, the response is predicted to be in the spacelike
region for which the energy transfer ν is less than the
magnitude of momentum transfer, |q|, as a consequence
of the inequality,

ν =
√

|k + q|2 +m2
q −

√
|k|2 +m2

q ≤ |q|. (1)

Here, k and mq are the momentum and mass of the struck
quark, respectively. The predicted response is discontinu-
ous at the boundary |q| = ν between space and timelike
regions. In fact, interactions among the constituents in the
initial state take the constituents off the mass-shell and
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move the response of the target into the timelike region of
four-momentum transfer.

In the many-body theory (MBT) one expects, at least
naively, that final-state interactions (FSI) should have an
effect on inclusive scattering cross-sections with electro-
magnetic probes from systems whose constituents are con-
fined. Scattering of high-energy probes from composite
systems, such as electron scattering by nuclei [4] and nu-
cleons [1], or neutron scattering by liquid helium [5], is
often used to study the structure of the bound system.
The common assumption is that in DIS at sufficiently
high energy the probe is incoherently scattered by the
constituents of the system. In the plane-wave impulse ap-
proximation (PWIA), which neglects FSI effects, DIS is
directly related to the momentum and energy distribution
of the constituents in the target.

The role of FSI effects has been studied extensively in
electron scattering from nuclear targets [6,7] and neutron
scattering from liquid helium [5]. Recently, it has been
suggested that they may also influence DIS of leptons by
hadrons [8]. In the present study we focus on scattering
from targets with confined constituents. The correspond-
ing physical case concerns DIS from nucleons where, in dis-
tinction from the nuclear and liquid-helium cases, the con-
stituents are confined in both the initial and final states.

2 The response and scaling variables

We consider the response to a hypothetical scalar probe
which couples to the density of a single scalar constituent.
This allows us to ignore complications due to spin and the



402 The European Physical Journal A

Fig. 1. The |q|-ν plane. The spacelike region is above the
|q| = ν line and the timelike one is below. Lines of constant
Q2 > 0 are parabolas which lie entirely in the spacelike region
and approach |q| = ν as ν → ∞. The observed (Q2 > 0)
response of the proton lies in the shaded area.

Lorentz structure of the response though it retains the
qualitative features of a more realistic model where one
considers the coupling of a spin-1

2 fermion to the conserved
electromagnetic current. The response is

R(q, ν) =
∑

I

|〈I|
∑

j

eiq·rj |0〉|2δ(EI − E0 − ν) , (2)

where
∑

j is over all the particles and the
∑

I over all
energy eigenstates. It is viewed as the distribution of the
strength of the state

∑
j e

iq·rj |0〉 over the energy eigen-
states of the system having momentum q. It is not neces-
sarily zero in the timelike, ν > |q| region.

2.1 Scaling variables

The conventional variables of the parton model, Q2 =
|q|2 − ν2 and the Bjorken x = Q2/2Mν, used to describe
the DIS structure functions of a hadron of mass M , are
confined to the spacelike region of the |q|-ν plane for pos-
itive values of Q2 accessible in lepton scattering experi-
ments, as shown in fig. 1. The observed (Q2 > 0) DIS
response is limited to a narrow region in the |q|-ν plane
illustrated in fig. 1. It is bounded by the elastic limit,
νel =

√|q|2 +M2 −M on one side, and by the photon
line on the other. In the limit of large |q| the width of the
observed response at fixed |q| is M . Lines of constant Q2

intersect the elastic-limit curve at x = 1 and approach the
photon line at small x.

We wish to study the full range of response possible
for a system of bound constituents including the region
of timelike momentum transfer. Therefore, we study the

response, R(q, ν) as a function of ν and |q| in the rest
frame of the system [9], as is common practice in the MBT.
Lines of constant |q| in fig. 1 cross the photon line (ν =
|q|) and go into the timelike region. The natural scaling
variable in the MBT approach to DIS [9] is ỹ = ν−|q|. At
large |q| the response is expected to depend only on ỹ, and
not on q and ν independently. This variable is equivalent
to the Nachtmann variable ξ since [10,11]

ξ =
1
M

(|q| − ν) = − 1
M
ỹ . (3)

In the limit of large Q2 the ξ = x, thus ỹ scaling includes
Bjorken scaling. However, both ỹ and ξ span both space-
like and timelike regions at fixed |q| unlike x at fixed Q2.

3 Model calculation

We have studied the exact response of a simple “toy”
model which contains the basic features of relativity and
confinement to obtain further insights on the possible re-
sponse in the timelike region and its effects on the sum
rules. In this model we assume that the response of the
hadron is due to a single light valence quark confined
within the hadron by its interaction with an infinitely mas-
sive color charge. We model this interaction by a linear
flux-tube potential, and use the single-particle Hamilto-
nian

H =
√

|p|2 +m2
q +

√
σ r (4)

containing the relativistic kinetic-energy operator. In the
limit mq = 0 used here, the H can be cast in the form

H = σ1/4
(√

|p′|2 + r′
)
, (5)

where p′ = p/σ1/4, and r′ = σ1/4r are dimensionless. The
response R(|q|, ν) of the model then depends only on the
dimensionless variables |q′| = |q|/σ1/4 and ν′ = ν/σ1/4.
The main conclusions of this work are independent of the
assumed value of σ; however, we show results in familiar
units using the typical value

√
σ = 1 GeV/fm.

The model may be viewed as that of a meson with
a heavy antiquark or that of a baryon with a heavy di-
quark. It is obviously too simple to address the observed
response of hadrons. For example, it omits the sea quarks
and radiative gluon effects contained in the DGLAP equa-
tions [1,2] to describe scaling violations. Nevertheless, its
exact solutions are interesting and useful to study scal-
ing, the approach to scaling, and the contribution of the
timelike region to sum rules. A similar model has been
considered by Isgur et al. [12].

The Hamiltonian is diagonalized in the spherical mo-
mentum basis and the response is calculated to ensure
that the full strength of the integrated response,∫ ∞

0

R(q, ν)dν = 1, (6)

is obtained in the chosen basis for all values of the mo-
mentum transfer considered in this work with < 0.02%
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Fig. 2. The response for values of |q| ≥ 3 GeV versus the
scaling variable, ỹ = ν − |q|.
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Fig. 3. The approach to scaling of the response for values
of |q| ≤ 2 GeV and |q| = 10 GeV versus the scaling variable,
ỹ = ν − |q|.

error. In order to obtain a smooth response we assume
decay widths for all the excited states dependent on the
excitation energy ν.

Figure 2 shows the response calculated for values of
|q| ≥ 3 GeV as a function of ỹ. The scaling behavior
is clearly exhibited; at large |q| the R(|q|, ν) becomes a
function f(ỹ) alone. This scaling is equivalent to ξ scaling
via eq. (3).

In fig. 3 we show the response at various values of
|q| ≤ 2 GeV compared with that for |q| = 10 GeV, to
study the approach to scaling. At small |q| the scatter-
ing is dominated by resonances, and the first inelastic
peak is due to the lowest-excited state with n = 1 and
� = 1, 335 MeV above the ground state. In our toy model,
the elastic scattering occurs at ν = 0 or ỹ = −|q|, since
our hadron is heavy. This elastic-scattering contribution
is omitted from fig. 3.

For ỹ ∼ 0, i.e. for small ξ, the response approximately
scales at relatively small values of |q|, comparable to σ1/4.
As |q| increases, the range over which scaling occurs is ex-
tended to more negative values of ỹ, i.e. to larger values

of ξ. The contribution of each resonance shifts to lower ỹ
and decreases in magnitude following the R(|q| → ∞, ỹ).
This behavior is seen in the experimental data on the
proton and deuteron [13] and interpreted as evidence for
quark-hadron duality. Thus, the toy model seems to de-
scribe some of the observed properties of the DIS response
of nucleons. It exhibits ỹ or equivalently ξ scaling at large
|q| as observed [9], and an approach to ξ scaling similar
to that seen in recent experiments.

3.1 Particle number sum rule

In general, the particle number sum rule in MBT is ob-
tained by integrating the response at large |q| over all
ν > 0:∫ ∞

0

R(q, ν)dν =
∑

I

〈0|
∑

i

e−iq·ri |I〉〈I|
∑

j

eiq·rj |0〉

=
∑
i,j

〈0|eiq·(rj−ri)|0〉. (7)

When q is large only the i = j terms in the above sum
contribute, and therefore the integral gives the number
of particles in the system. In contrast, the sums of the
response in the parton model are obtained by integrating
the response over ξ > 0 at fixed Q2. These sums will
fulfill the particle number sum rule only if the response
in the timelike region is zero. As mentioned earlier, the
response of a collection of noninteracting particles lies in
the spacelike region. Interaction effects, however, can shift
a part of the strength to the timelike region. Evidence for
shifts caused by interactions is discussed in ref. [9].

Returning to the “toy” model, the R(|q|, ν), and there-
fore the f(ỹ) extend into the timelike (ỹ > 0) region. The
sum rule given by eq. (6), counts the number of particles
in the target. It is necessary to integrate over the timelike
region to fulfill this sum rule. About 10% of the sum is
in that region independent of

√
σ. The response expressed

as R(Q2, ξ) also scales at large Q2 where |q| is necessar-
ily large. It becomes a function of ξ alone. However, the
integral

∫ ∞

0

R(Q2 → ∞, ξ)dξ =
∫ |q|

0

R(|q| → ∞, ν)dν � 0.9,

(8)
because the contribution of the timelike region is omitted.
Here we have defined ξ = |q|−ν without the conventional
1/M scale (eq. (3)).

4 Final-state interaction effects

We study the effects of the FSI of the struck particle on
the response. Analytic calculations of the width of the
response are presented for a general spherically symmet-
ric potential and numerical results for a linear confin-
ing potential are given. These indicate that the FSI in-
crease the width of the response beyond that predicted by
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PWIA. The analytic calculations also consider the nonrel-
ativistic problem, in which q is large compared to all the
momenta in the target, but smaller than the constituent
mass m. The main differences between the nonrelativistic
and the relativistic response are that the former peaks at
ν = |q|2/2m and has a width proportional to |q|, while
the latter peaks at ν ∼ |q|, and has a constant width in
the scaling limit.

4.1 Moments of the response

In the case of a single confined particle, the state of the
system after the probe has struck the target is

|X〉 = eiq·r|0〉, (9)

where |0〉 denotes the ground state of the particle. The
state |X〉 is not an eigenstate of the Hamiltonian and
therefore has a distribution in energy. It has a unit norm,
〈X|X〉 = 〈0|e−iq·reiq·r|0〉 = 1. The total strength of the
response, given by the static structure function

S(|q|) =
∫ ∞

0

dν R(|q|, ν), (10)

is therefore unity. In many-body systems S(|q|) is not nec-
essarily equal to unity. Subsequent formulas pertain to the
general case and show factors of S(|q|) explicitly.

The mean excitation energy of the state |X〉 is given
by the first moment of the response:

ν(|q|) =
1

S(|q|) 〈X|H−E0|X〉 =
1

S(|q|)
∫ ∞

0

dν ν R(|q|, ν).
(11)

The width of the distribution in energy is characterized
by the second moment of the energy about the mean:

∆2(|q|) =
1

S(|q|) 〈X|
(
H − 〈X|H|X〉

S(|q|)
)2

|X〉. (12)

Substitution of eq. (9) into the formulas for the first
three moments of the response gives the following results:

ν(|q|) = |q| + 〈V 〉0 − E0

+
1

3|q| 〈k
2〉0 + O

(
1

|q|3
)

; (13)

∆2(|q|) =
1
3
〈k2〉0 + 〈V 2〉0 − 〈V 〉20

+
2

3|q|
(〈k2V 〉0−〈k2〉0〈V 〉0

)
+O

(
1

|q|2
)
. (14)

Here, O
(

1
|q|n

)
denotes the neglected terms of that and

higher order and the angle brackets with subscript “0” in-
dicate averaging with respect to the ground state. Thus,
ν(|q|) = |q|−〈T 〉0 in the limit |q| → ∞, where T =

√|p|2
is the kinetic energy. The requirement that ν(|q|) − |q| be-
comes constant is naturally satisfied in this limit. This ex-
pression demonstrates that the average energy and width

of the exact response is independent of |q| in the limit
|q| → ∞, as necessary for ỹ scaling. It also shows that the
width has a kinematic contribution dependent upon the
target momentum distribution and an additional interac-
tion contribution.

As mentioned, the PWIA assumes that a constituent
of momentum k, after being struck by the probe, may be
described by a plane wave with momentum k + q in an
assumed average potential chosen to give the exact ν of
eq. (13). From the PWIA response we calculate

∆2
PWIA =

1
3
〈k2〉0 + O

(
1

|q|2
)

(15)

that contains only the first term of the exact result
(eq. (14)) due to the target momentum distribution. The
second term, 〈V 2〉0 − 〈V 〉20 of eq. (14) represents the FSI
contribution neglected in the PWIA. It does not vanish in
the |q| → ∞ limit for relativistic kinematics.

In the nonrelativistic case, HNR = |p|2
2m + V (r), the

exact ν is given by

νNR =
1

2m
|q|2 . (16)

For the width of the NR-PWIA response we obtain

∆2
NR-PWIA(|q|) = |q|2 〈k

2〉0
3m2

+
1

4m2

(〈k4〉0 − 〈k2〉20
)
. (17)

Note that in eqs. (16) and (17) we have not taken the
|q| → ∞ limit.

The width of the exact NR response is

∆2
NR(|q|) = ∆2

NR-PWIA +
1
m

(〈V k2〉0 − 〈V 〉0〈k2〉0
)

+〈V 2〉0 − 〈V 〉20 . (18)

It differs from ∆NR-PWIA in terms of order 1/|q| which
can be neglected in the scaling limit. Thus, in contrast to
the relativistic case, the FSI do not increase the width of
the NR-PWIA response at large |q|.

Finally, we consider the on-shell approximation (OSA)
in which the energy of the struck constituent is that of a
free relativistic particle before and after the interaction
with probe, as assumed in the quark-parton model. The
response in OSA depends only on the momentum distri-
bution of target constituents and obeys ỹ scaling. The
average excitation in OSA is

νOSA = |q| − 〈T 〉0 +
1

3|q| 〈k
2〉0 + O

(
1

|q|3
)
, (19)

and the width is given by:

∆2
OSA =

1
3
〈k2〉0 + 〈k2〉0 − 〈T 〉20 + O

(
1
|q|

)
. (20)

The exact value of ν (eq. (13)) is reproduced by the OSA
for any potential. However, the ∆2

OSA has 〈k2〉0 − 〈T 〉20 in
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Fig. 4. The response versus ỹ calculated exactly for Γ0 =
100 MeV (thin solid curve) and Γ0 = 50 MeV (dotted curve).
The response in OSA are shown for |q| = 10 GeV (dashed
curve) and |q| → ∞ (dot-dashed curve). The PWIA responses
for |q| = 10 GeV and |q| → ∞ lie on essentially the same
(thick solid) curve.

place of the 〈V 2〉0 −〈V 〉20 in the leading term of the exact
∆2 (eq. (14)). For a massless particle in a linear confining
potential, i.e. for the Hamiltonian of eq. (5), 〈T 〉0 = 〈V 〉0,
and 〈k2〉0 = 〈V 2〉0. Therefore, for this particular Hamil-
tonian the OSA reproduces the exact value of ∆ but the
shape is wrong.

4.2 Numerical results

We first compare the response functions for |q| = 10
GeV before comparing their moments. In ref. [14] it has
been shown that the scaling limit is obtained for such val-
ues of |q|. The exact response, eq. (2), is a sequence of
δ-functions at ν = EI − E0. In order to obtain a smooth
response we assume decay widths Γ0 for all the excited
states. Note that the energies of the states |I〉 that con-
tribute to the response at |q| = 10 GeV are large, there-
fore their decay widths are not affected by the energy-
dependent terms assumed in ref. [14]. The response in-
cluding decay widths is given by

R(q, ν)=
∑

I

|〈I|eiq·r|0〉|2
(
Γ0

2π

)
1

(EI− E0− ν)2+ Γ 2
0 /4

.

(21)

The responses obtained with Γ0 = 100 and 50 MeV are
shown in fig. 4, along with the PWIA and OSA responses
for |q| = 10 GeV and for |q| → ∞. The difference be-
tween the exact responses for Γ0 = 100 and 50 MeV are
much smaller than those between the exact and the ap-
proximate.

We note that the shape of the PWIA response is qual-
itatively similar to that of the exact, however, its width
is too small. This is a direct consequence of the neglect of
interaction terms in ∆ (eq. (14)) as discussed in the last
section. The width ∆ of the response is 409 MeV, while
the ∆PWIA = 326 MeV.

The OSA results in the discontinuous curves shown in
fig. 4. They are discontinuous at the lightline (|q| = ν)
because the response of free particles is limited to the
spacelike region ν < |q|. The discontinuity at ỹ = 0 is in
clear conflict with the exact response which is continuous
across the lightline and is nonzero in the timelike (ỹ > 0)
region. Therefore, the OSA appears to be unsatisfactory
even though for the special case of a linear potential it has
the exact values of S(|q|), ν(|q|) and ∆(|q|).
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